100 South Wacker Drive Suite 500 Chicago, Illinois 60606 www.aecom.com

312 939 4198 fax

Technical Memorandum

То	Nadine Marion, Arnold Magnetic Technologies	
	Julie Johnson, AECOM	
сс	Pat Dunne, AECOM	
Subject	Marengo Wastewater Permit Assistance 2016	
From	Dan McHale, AECOM	
Date	March 17, 2016	

AECOM Technical Services, Inc. (AECOM) prepared this Technical Memorandum to summarize our review of available groundwater data relative to Arnold Magnetic Technologies' (AMT) Marengo, Illinois facility's wastewater pond system. The purpose of the data review was to provide information supporting the Marengo facility's wastewater permit renewal.

Background

The facility operates a non-contact cooling water system utilizing a deep (800 foot) groundwater well as the source of system make up water. Spent cooling water, process wastewater, and treated sanitary wastewater are discharged into four (4) onsite lined treatment ponds connected in series. Water from Pond 4 is either reused and cycled through the process cooling system, or discharged to a percolation field. Groundwater from the deep groundwater well is used to provide the additional make up water to maintain system water balance. Groundwater quality from the deep well is likely geochemically different than shallow site groundwater, and there is little likelihood that the shallow aquifer is in hydraulic communication with the deep aquifer because of a regionally extensive aquitard (Maquoketa Shale Group) separating the two groundwater systems.

AECOM understands that the Illinois Environmental Protection Agency (Illinois EPA) recently denied renewal of AMT's wastewater permit. Illinois EPA has indicated that the denial was based on the agency's concern that the wastewater treatment ponds potentially could be a source of chlorinated organic compound and metal exceedances in the shallow aguifer at and to the northwest of the AMT site as depicted in the provided site monitoring report figures. We also understand there are ongoing efforts to characterize groundwater contamination in the vicinity of the site, but that the on-site source of the contamination is presently ill-defined. The reported Constituents of Concern in shallow groundwater include chlorinated organic compounds (tetrachloroethene, trichloroethene, 1,1,1trichloroethane, 1,1-dichloroethene) and 1,4-dioxane. Remaining groundwater constituents of concern include the metal species: aluminum, lead, iron, nickel, chromium, beryllium and manganese.

Materials Reviewed

All reviewed material was provided to AECOM by AMT; a list of reviewed materials can be provided upon request. Salient laboratory or other data used to support the conclusions of this memorandum are provided in Attachment 1.

Summary of Data Review

AECOM reviewed reports and laboratory data describing groundwater contamination that has been documented since at least 2001. AECOM also reviewed historical laboratory data for the pond system, including data that supported previously- approved wastewater permits issued by Illinois EPA (Attachment 1). These same data were used to demonstrate that the pond discharge to the percolation field did not require further monitoring, and supported Illinois EPA's May 2011 revision of the prior wastewater permit. The May 2011 permit revision reduced the number of routinely-monitored parameters based on the demonstrated historical absence of elevated constituent concentrations, and presumably, the fact that no changes had been made in the design or nature of the pond system.

AECOM compared the historical laboratory results for the pond system with groundwater sampling results. Water from the Pond 4 outfall appears to have been consistently free (*i.e.*, not detected) of chlorinated compounds throughout the provided monitoring period (2001 to 2010). Furthermore, water samples from the 2010 data submitted to Illinois EPA in support of the May 2011 permit show non-detect to low concentrations of the metals that are currently present at concentrations above Illinois Class I groundwater standards in site shallow groundwater. The concentrations associated with the pond water are not consistent with the relatively higher concentrations of chlorinated compounds and metals observed in groundwater samples.

We note that AMT's operations associated with the cooling and process water discharges have not changed since the last wastewater permit renewal. Therefore it is unlikely that the chemistry of the pond water has changed significantly since previous testing in 2010.

Conclusions

In our opinion, the information AECOM reviewed indicates the wastewater pond system does not contribute chlorinated solvents or elevated metals to shallow groundwater; therefore, the water treatment system is not expected to have any impact on the concentrations of the Constituent of Concern in the groundwater. The historical laboratory data used as the basis for previous permitting (Attachment 1) show either non-detections or low concentrations for the specific Constituents of Concern in the vicinity of the site. Review of the groundwater data from previous reports indicates the presence of contaminants in shallow groundwater that have not been observed in water samples taken from the pond system.

Although pond system water samples have not been analyzed for the specific Constituents of Concern over the previous five years (in accordance with the revised wastewater permit approved by Illinois EPA), the use of the industrial process water has not changed, and it is therefore unlikely that the pond water chemistry has significantly changed.

Although the historical data described above appear to provide a reasonable means to demonstrate that the pond system is not a source of groundwater contamination, there are additional lines-of-evidence that could be pursued to further support the conclusions of this memorandum. These arguments include:

- AECOM understands that the ponds are lined. An existing potentiometric surface map of the shallow groundwater system at the site, though not available at the time of this review, combined with system water balance calculations of the cooling system, could be used to support the argument that the ponds are not a significant source of water to the underlying shallow groundwater system. If additional water quality evidence is required, deep groundwater (*i.e.*, cooling system water) geochemistry (major cation/anion composition) should be sufficiently different from the groundwater in the shallow aquifer system to identify if mixing is occurring immediately downgradient of the wastewater ponds.
- As indicated in several site reports, the source of shallow groundwater impacts at the site appears to be ill-defined and/or from multiple unspecified sources. Based on a very preliminary review, It would seem far more logical to presume that the likely sources of groundwater contamination at the site would be the former USTs (*e.g.*, two 6,000-gallon USTs containing 1,1,1-TCA closed circa 1990), a reported LUST incident (two 8,000-gallon tanks, contents unknown, removed in 2008) and other existing/former site manufacturing buildings, rather than the routinely monitored wastewater system.
- Analytical results from monitoring wells in the vicinity of the percolation field area do not suggest a source of chlorinated solvent or metal contamination. Reported shallow groundwater exceedances in the percolation field areas consist of manganese. Unlike aluminum, cobalt, iron, or nickel, manganese is not believed to be a common constituent of the alloys used at the facility. Further, manganese was not detected above ambient levels in the discharge to the percolation field. Conversely, nickel was detected at concentrations near or at the Class I groundwater standard in the 2010 discharge, but was not detected above the Class I standard in percolation field area groundwater. These inconsistencies show that the elevated manganese results in shallow groundwater, as indicated in previous site reports, are more likely indicative of ambient area background concentrations or sampling methodology (suspended solids presence and subsequent digestion).

Recommendations

AECOM recommends that available records be searched for historical laboratory data associated with the pond system, including groundwater sampling data from the deep groundwater supply well, and if found, these data be evaluated to help support the conclusions stated above. Other data to help support the conclusions of this memorandum include groundwater contour maps and pond construction as-builts.

AECOM also recommends that consideration be given to performing additional pond water sampling to further demonstrate permit compliance and characterize the current quality of the wastewater. At the minimum, verification sampling of the Pond 4 outfall could be performed in support of the current permit re-application.

We recommend that AMT contact the laboratory that provided pond water analyses from 2001 through 2010 to determine if additional metal analyses were performed, but not reported; this is a possibility since nickel has been consistently analyzed during this time period.

Attachments

Attachment 1 – Supporting Historical Data

ATTACHMENT 1 <u>06/27/2016 - PC</u>B 2016-097*** - Recei<mark>ved, Clerk's Off</mark>i Electronic Filina

This Agency is authorized to require this information under Illinois Revised Statutes, 1979, Chapter 111 1/2, Section 1039. Disclosure of this information is required under that section. Failure to do so may prevent this form from being processed and could result in your application being denied.

Log #	
Date Received:	

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF WATER POLLUTION CONTROL PERMIT SECTION

Springfield, Illinois 62794-9276

SCHEDULE N WASTE CHARACTERISTICS

1 Name of Project: 2 FLOW DATA

EXISTING PROPOSED-DESIGN NA 2.1 Average Flow (gpd) 163,030 gpd 217,333 gpd NA 2.2 Maximum Daily Flow (gpd) 2.3 TEMPERATURE Max. Temp Avg. Effluent Max Effluent **Outside Mixing** Time of Avg. Intake Zone F Year Temp. F Temp.F Temp. F. NA SUMMER NA NA NA WINTER NA NA NA NA

Arnold Magnetic Technologies - Arnold Engineering

2.4 Minimum 7-day, 10-year flow

2.5 Dilution Ratio:

Type of Sample:

2.6 Stream flow rate at time of sampling

3 CHEMICAL CONSTITUENT

X grab (time of collection) 10/18/2010, 10/19/2010, 11/18/2010, 12/21/2010

Historical metals and VOC data

(and instructions for analyzes required)

Single 24-hr composite (10/18/2010) for all reported values except total phenols, VOCs, TRC, oil & grease, total cyanide, pH and mercury

NA

Existing Permitted Conditions 🗮 ; Existing Conditions 🗌 ; Proposed Permitted Conditions 🗆

MGD

	RAW WASTE	TREATED EFFLUENT	UPSTREAM	DOWNSTREAM SAMPLES
CONSTITUENT	(mg/l)	Avg. (mg/l) Max.	(mg/l)	(mg/l)
Ammonia Nitrogen (as N)	< 0.2 [†]	<0.2	NA	NA
Arsenic (total)	< 0.045	0.046 [‡]	NA	NA
Barium	0.12	0.064	NA	NA
Boron	0.17	0.16 [‡]	NA	NA
BOD ₅	<2.0**	<2.0**	NA	NA
Cadmium	<0.0050	<0.0050	NA	NA
Carbon Chloroform Extract	see TOC Dup	see TOC Dup	NA	NA
Chloride	160	160	NA	NA
Chromium (total)	<0.01	<0.01	NA	NA
Chromium (total trivalent)	NA	NA	NA	NA
Copper	<0.018	<0.018	NA	NA
Cyanide (total)	<0.0054	<0.0054	NA	NA
Dissolved Oxygen	NA	NA	NA	NA
Fecal Coliform	NA	NA	NA	NA
Fluoride	<0.2	<0.2	NA	NA
Hardness (as Ca CO ₃)	280	180	NA	NA
Iron (total)	0.50	0.54	NA	NA
Lead	<0.016	<0.016	NA	NA
Manganese	0.0045	0.005	NA	NA
MBAS	<0.12	<0.12	NA	NA
Mercury	<0.000065	<0.00065	NA	NA
Nickel	0.088	0.1	NA	NA
Nitrates (as N)	0.17 [‡]	<.024	NA	NA
Oil & Grease (hexane solubles or equivalent)	0.9 [‡]	<0.87	NA	NA
Organic Nitrogen (as N)	<0.25	<0.25	NA	NA
pH	6.6	8.54	NA	NA
Phenois	0.0075	0.00845 (avg), 0.014 (max)	NA	NA
Phosphorous (as P)	120	150	NA	NA
Radioactivity	NA	NA	NA	NA
Selenium	<0.044	<0.044	NA	NA
Silver	< 0.0037	<0.0037	NA	NA
Sulfate	12	12	NA	NA
Total Suspended Solids	4	3‡	NA	NA
Total Dissolved Solids	730	700	NA	NA
Zinc	<0.002 [†]	<0.002 [†]	NA	NA
Others	see attached	see attached	NA	NA

† Analyte detected in method blank

Result between MDL and LOQ and is therefore less certain.
 Result less than RL but greater than MDL. Value is estimated.

Oxygen depletion less than 2 mg/l. Result is estimated.

Note: All metals are reported as "Total"

MGD cfs NA

: NA NA NA cfs

NA

composite (number of samples per day) See below

Table of Other Inorganic Compounds and Remaining Conventional Parameters

	RAW WASTE	TREATED EFFLUENT	UPSTREAM	DOWNSTREAM SAMPLES
CONSTITUENT	(mg/l)	Avg. (mg/l) Max.	(mg/l)	(mg/l)
TOC Dup	6.5	1.9	NA	NA
COD	17 [‡]	<11	NA	NA
TKN	<0.25	<0.25	NA	NA
TRC	<0.016	0.1	NA	NA
Aluminum	<0.15	<0.15	NA	NA
Antimony	0.088	<0.042	NA	NA
→ Beryllium	<0.005	<0.005	NA	NA
Cobalt	0.034	0.04	NA	NA
Magnesium	36	36	NA	NA
Molybdenum	0.0068	0.0069	NA	NA
Thallium	<0.017	<0.017	NA	NA
Tin	<0.00061	<0.00061	NA	NA
Titanium	<0.002	<0.002	NA	NA
Bromide	<1.0	<1.0	NA	NA
Sulfide	<0.2	<0.2	NA	NA

† Analyte detected in method blank

Result between MDL and LOQ and is therefore less certain.
 Result less than RL but greater than MDL. Value is estimated.

** Oxygen depletion less than 2 mg/l. Result is estimated. Note: All metals are reported as "Total"

Table of SVOCs

Table of SVOCs			Lineraraid	BOUNDEREAN OANDI FO
	RAW WASTE	TREATED EFFLUENT	UPSTREAM	DOWNSTREAM SAMPLES
CONSTITUENT	(ug/l)	Avg. (ug/l) Max.	(ug/l) NA	(ug/l) NA
1,2,4-Trichlorobenzene	<1.4	<1.4		
1,2-Dichlorobenzene	<1.2	<1.2	NA	NA
1,2-Diphenylhydrazine	<1.4	<1.4	NA	NA
1,3-Dichlorobenzene	<1.3	<1.3	NA	NA
1,4-Dichlorobenzene	<1.3	<1.3	NA	NA
2,4,6-Trichlorophenol	<1.1	<1.1	NA	NA
2,4-Dichlorophenol	<1.3	<1.3	NA	NA
2,4-Dimethylphenol	<1.6	<1.6	NA	NA
2,4-Dinitrophenol	<8.1	<8.1	NA	NA
2,4-Dinitrotoluene	<1.5	<1.5	NA	NA
2,6-Dinitrotoluene	<1.3	<1.3	NA	NA
2-Chloronaphthalene	<1.4	<1.4	NA	NA
2-Chlorophenoi	<1.1	<1.1	NA	NA
2-Nitrophenol	<1.2	<1.2	NA	NA
3,3'-Dichlorobenzidine	<1.3	<1.3	NA	NA
4,6-Dinitro-o-cresol	<5.0	<5.0	NA	NA
4-Bromophenyl phenyl ether	<1.4	<1.4	NA	NA
4-Chlorophenyl phenyl ether	<1.3	<1.3	NA	NA
4-Nitrophenol	<3.6	<3.6	NA	NA
Acenaphthene	<1.5	<1.5	NA	NA
Acenaphthylene	<1.5	<1.5	NA	NA
Anthracene	<1.4	<1.4	NA	NA
Benzidine	<10	<10	NA	NA
Benzo[a]anthracene	<1.1	<1.1	NA	NA
Benzolalpyrene	<1.2	<1.2	NA	NA
Benzo[b]fluoranthene	<1.1	<1.1	NA	NA
Benzolg,h,ijperylene	<1.4	<1.4	NA	NA
Benzo[k]fluoranthene	<1.4	<1.4	NA	NA
bis (2-chloroisopropyl) ether	<1.4	<1.4	NA	NA
Bis(2-chloroethoxy)methane	<1.4	<1.4	NA	NA
	6,1*	<1.1	NA	NA
Bis(2-ethylhexyl) phthalate	<1.3	<1.3	NA	NA
Butyl benzyl phthalate	<1.3	<1.3	NA	NA
Chrysene		<1.4	NA	NA
Dibenz(a,h)anthracene	<1.4		NA	NA
Diethyl phthalate	<1.3	<1.3	NA	NA
Dimethyl phthalate	<1.2	<1.2		
Di-n-butyl phthalate	<1.2	<1.2	NA	NA NA
Di-n-octyl phthalate	<1.6	<1.6	NA	NA
Fluoranthene	<1.4	<1.4	NA	NA
Fluorene	<1.6	<1.6	NA	NA
Hexachlorobenzene	<1.3	<1.3	NA	NA
Hexachlorobutadiene	<1.5	<1.5	NA	NA
Hexachlorocyclopentadiene	<1.3	<1.3	NA	NA
Hexachloroethane	<1.2	<1.2	NA	NA
Indeno[1,2,3-cd]pyrene	<1.3	<1.3	NA	NA
Isophorone	<1.4	<1.4	NA	NA
Naphthalene	<1.4	<1.4	NA	NA
Nitrobenzene	<1.3	<1.3	NA	NA
N-Nitrosodimethylamine	<5.2	<5.2	NA	NA
N-Nitrosodi-n-propylamine	<1.6	<1.6	NA	NA
N-Nitrosodiphenylamine	<1.8	<1.8	NA	NA
p-Chloro-m-cresol	<1.4	<1.4	NA	NA
Pentachlorophenol	<7.5	<7.5	NA	NA
Phenanthrene	<1.4	<1.4	NA	NA

Analyte detected in method blank
 Assult between MDL and LOQ and is therefore less certain.
 Result less than RL but greater than MDL. Value is estimated.

** Oxygen depletion less than 2 mg/l. Result is estimated.

Note: All metals are reported as "Total"

Table of VOCs	_		-	
	RAW WASTE	TREATED EFFLUENT	UPSTREAM	DOWNSTREAM SAMPLES
CONSTITUENT	(ug/l)	Avg. (ug/l) Max.	(ug/l)	(ug/l)
Benzene	<0.2	<0.2	NA	NA
Bromodichloromethane	<0.2	<0.2	NA	NA
Bromoform	<0.2	<0.2	NA	NA
Bromomethane	<0.5	<0.5	NA	NA
Carbon Tetrachloride	<0.8	<0.8	NA	NA
Chlorobenzene	<0.2	<0.2	NA	NA
Chloroethane	<1.0	<1.0	NA	NA
Chloroform	4.0	4.2	NA	NA
Chloromethane	<0.3	<0.3	NA	NA
Chlorodibromomethane	<0.2	<0.2	NA	NA
1,1-Dichloroethane	<0.5	<0.5	NA	NA
1,2-Dichloroethane	<0.5	<0.5	NA	NA
1,1-Dichloroethene	<0.5	<0.5	NA	NA
cis-1,2-Dichloroethene	<0.5	<0.5	NA	NA
trans-1,2-Dichloroethene	<0.5	<0.5	NA	NA
1,2-Dichloropropane	<0.5	<0.5	NA	NA
Ethylbenzene	<0.5	<0.5	NA	NA
Methylene Chloride	<1.0	<1.0	NA	NA
Styrene	<0.5	<0.5	NA	NA
1,1,2,2-Tetrachloroethane	<0.2	<0.2	NA	NA
Tetrachloroethene	<0.5	<0.5	NA	NA
Toluene	<0.5	<0.5	NA	NA
1,1,1-Trichloroethane	<0.5	<0.5	NA	NA
1,1,2-Trichloroethane	<0.25	<0.25	NA	NA
Trichloroethene	<0.2	<0.2	NA	NA
Trichlorofluoromethane	<0.5	<0.5	NA	NA
Vinyl Chloride	<0.2	<0.2	NA	NA
Total Xylenes	<0.5	<0.5	NA	NA

† Analyte detected in method blank

Analyte detected in method blank
 Result between MDL and LOQ and is therefore less certain.
 Result less than RL but greater than MDL. Value is estimated.
 Oxygen depletion less than 2 mg/l. Result is estimated. Note: All metals are reported as "Total"

Tabl

THE ARNOLD ENGINEERING CO. MARENGO, IL

Historical VOC data

	Г Г							1																
	l	Mon	itoring	Well #1				Mon	itoring V	Vell #2	L			Moni	toring V	Vell #3					Outfal	I Pond 4		
	ANE						TRICHLOROETHANE						TRICHLOROETHANE						TRICHLOROETHANE	ETRACHLOROETHENE	ш	(0)		
	TRICHLOROETHANE	ETRACHLOROETHENE	TRICHLOROETHENE	SOLIDS			ETH	TETRACHLOROETHENE	TRICHLOROETHENE	SOLIDS			ETH	TETRACHLOROETHENE	TRICHLOROETHENE	SOLIDS			DETP	ETH	TRICHLOROETHENE	SOLIDS		
	DRO	ROE	ETH	sol			DRO	RO		SOI			ORC	DRO	ETH				ORO	ORC	DET			
	HLO	FLO	RO	ED /			HLG	HLO	DRO	/ED			E E	HLO	ORC	VED			SH	L H	OR(VED	.	
	RIC	3ACI	HLO	OLV	Щ		L RIO	AC	HLC	SOLV	Ü		TRIC	RAC	CHL	SOL	ÆL		TRI	RAC	GHL	ISSOLVED	NICKEL	
	11	ETF	RIC	DISSOLVED	NICKEL	Hd	F.		LRIC	DISSOLVED	NICKEL	H	111	TET	TRIC	DISSOLVED	NICKEL	Hd	111	- 1				Hd
LIMITS	200	5	5	1200	0.1	6.5-9	200	5	5	1200	0.1	6.5-9	200	5	5	1200	0.1000	6.5-9					R CLASS	
Date	ug/l	ug/l	ug/l	mg/l	mg/l		ug/l	ug/l	ug/l	mg/l	mg/l		ug/l	ug/l	ug/l	mg/l	mg/l		ug/l	ug/l	ug/l	mg/l	mg/l	
a 1/10/01	<1.0	<1.0	<1.0	240	<0.050		<1.	<1.0	<1.0	270	0.059		2100	1.3	4.7	610	<0.050		<1.0	2.2	<1.0	476 527	0.405	
2/2/2001	<1.0	<1.0	<1.0	368	<0.050		<1.			366	<0.050		1600	<20	<20	672	<0.050		<1.0	1.2	<1.0	504	1.02	
3/7/2001	<1.0	<1.0	<1.0	340	<0.050		<1.			412	<0.050		1700	<10	<10	542	<0.050		<1.0	<1.0 <1.0	<1.0	534	2.14	
4/2/2001	<1.0	<1.0	<1.0	336	<0.050		<1.			414	<0.050		1200	1.4	3.8	684	< 0.050		<1.0	<1.0	<1.0	532	1	
5/2/2001	<1.0	<1.0	<1.0	336	<0.050		<1.			454	<0.050		1200	1.2	3.7	658 664	<0.050 <0.050		<1.0	<1.0	<1.0	508	0.47	
6/11/2001	<1.0	<1.0	<1.0	348	<0.050		<1.0			484	< 0.050		1800	<10	<10	662	<0.050		<1.0	<1.0	<1.0	518	0.38	
7/10/2001	<1.0	<1.0	<1.0	324	<0.050		<1.0			464	0.063		2800	<10 <10	<10	663	<0.050		<1.0	<1.0	<1.0	916	0.25	
8/16/2001	<1.0	<1.0	<1.0	352	<0.050		<1.0			378	0.059		3000	1.3	<10 4.6	703	<0.050		<1.0	<1.0	<1.0	462	0.333	
9/7/2001	<1.0	<1.0	<1.0	376	<0.050		<1.0			448 454	<0.050 0.051		2200	<20	<20	656	<0.050		<1.0	<1.0	<1.0	542	0.645	
10/2/2001	<1.0	<1.0	<1.0	400	<0.050		<1.0			454	0.051		1900	1.1	4.8	646	<0.050		<1.0	<1.0	<1.0	638	0.352	
11/16/2001	<1.0	<1.0	<1.0	350	< 0.050		<1.0			420	0.035		1750	<2.0	4.8	662	0.0250		<2.0	<2.0	<2.0	670	0.298	
12/11/2001	<2.0	<2.0	<2.0	385 380	<0.010		<2.0		<2.0	390	0.059		1250	<2.0	2.8	655	0.0500		<2.0	<2.0	<2.0	634	0.431	
1/11/2002	<2.0	<2.0	<2.0	396	0.013		<1.0		<1.0	426	0.062		789	1.3	3.6	708	0.0290		<1.0	<1.0	<1.0	646	0.325	
2/11/2002	<1.0	<1.0	<1.0	396	0.021		<2.0		<2.0	414	0.055		505	<2.0	2.8	635	0.0290		<2.0	<2.0	<2.0	691	0.466	
3/7/2002	<2.0	<2.0 <2.0	<2.0	346	0.018		<2.0		<2.0	457	0.099		271	<2.0	<2.0	605	0.0320		<2.0	<2.0	<2.0	698	0.431	
4/22/2002	<2.0 <2.0	<2.0	<2.0	356	<0.013		<2.0		<2.0	540	0.111		203	<2.0	<2.0	593	0.0130		<2.0	<2.0	<2.0	851	0.776	
5/21/2002 6/7/2002	<2.0	<2.0	<2.0	340	<0.010		<2.0		<2.0	281	0.026		170	<2.0	<2.0	560	0.0430		<2.0	<2.0	<2.0	630	0.6	
7/12/2002	<2.0	<2.0	<2.0	321	<0.010		<2.0		<2.0	487	0.111		140	<2.0	<2.0	523	0.0350		<2.0	<2.0	<2.0	608	0.336	
8/2/2002	<1.0	<1.0	<1.0	335	0.072		<1.0		<1.0	551	0.063		87	<1.0	<1.0	536	0.0220		<1.0	<1.0	<1.0	20600	0.386	
9/6/2002	<1.0	<1.0	<1.0	345	< 0.010		<1.0		<1.0	400	0.037		76	<1.0	<1.0	592	0.0190		<1.0	<1.0	<1.0	886	0.701	
10/11/2002	<1.0	<1.0	<1.0	354	0.029		<1.0		<1.0	566	0.198		192	<1.0	<1.0	630	0.0400		<1.0	<1.0	<1.0	738	0.306	
11/12/2002	<1.0	<1.0	<1.0	347	0.011		<1.0		<1.0	613	0.14		188	<1.0	<1.0	602	0.0130		<1.0	<1.0	<1.0	964	0.298	
12/16/2002	<1.0	<1.0	<1.0	357	< 0.010		<1.0	<1.0	<1.0	696	0.169		617	<1.0	<1.0	637	0.0230		<1.0	<1.0	<1.0	703	0.273	
1/10/2003	<1.0	<1.0	<1.0	360	0.015		<1.0		<1.0	744	0.101		636	1.1	1.1	676	0.0290		<1.0	<1.0	<1.0	520	0.22	
2/7/2003	<1.0	<1.0	<1.0	288	0.013		<1.0	<1.0	<1.0	704	0.047		310	1.2	<1.0	576	<0.010		<1.0	<1.0	<1.0	564	0.218	
3/21/2003	<1.0	<1.0	<1.0	370	0.023		<1.0		<1.0	675	0.055		62	2.3	<1.0	48	0.1280		<1.0	<1.0	<1.0	611	0.247	
4/11/2003	<1.0	<1.0	<1.0	384	0.019		<1.0	<1.0	<1.0	688	0.056		42	2.2	<1.0	650	0.1160		<1.0	<1.0	<1.0	792	0.227	
5/9/2003	<1.0	<1.0	<1.0	396	0.01		<1.0	<1.0	<1.0	699	0.102		83	<1.0	<1.0	564	0.0790		<1.0	<1.0	<1.0	682	0.262	
6/7/2003	<1.0	<1.0	<1.0	364	0.033		<1.0	<1.0	<1.0	518	0.081		87	2.7	<1.0	583	0.0760		<1.0	<1.0	<1.0	750	0.243	

1

THE ARNOLD ENGINEERING CO. MARENGO, IL

		V-11-110	Monitoring Well #3	Outfall Pond 4
Monitoring Well #1	Monitoring W			Щ ш
	Щ Ш		111 TRICHLOROETHANE TETRACHLOROETHENE TRICHLOROETHENE DISSOLVED SOLIDS NICKEL PH	111 TRICHLOROETHANE TETRACHLOROETHENE TRICHLOROETHENE DISSOLVED SOLIDS DISSOLVED SOLIDS NICKEL
	TRICHLOROETHANE RACHLOROETHENE CHLOROETHENE	(0)	포 뿌 빛 및 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	ROETHE ETHENE SOLIDS
↓ ↓<	는 프 · 프	SOLIDS	ROETH. ETHENE SOLIDS	
				SO II SO III
ROETH ROETHE SOLIDS	ET NG	S		
				동 토 땅 핏
	풍 풍 병			
	HL AO		1 TRICHLC TRACHLORO SSOLVED ICKEL	
TRICHLOROETHANE RACHLOROETHENE CHLOROETHENE SOLVED SOLIDS SKEL		DISSOLVED	111 TRICHLOROETH/ TETRACHLOROETHE TRICHLOROETHENE DISSOLVED SOLIDS NICKEL	111 TRICHLOROETHA TETRACHLOROETHENE TRICHLOROETHENE DISSOLVED SOLIDS NICKEL
111 TRICHLOROETHANE TETRACHLOROETHANE TRICHLOROETHENE DISSOLVED SOLIDS DISSOLVED SOLIDS	TET 111			NO LIMIT - 2'NDARY WATER CLASS
<u> </u>	200 5 5	1200 0.1 6.5-9	200 0 0	ug/l ug/l ug/l mg/l mg/l
	ug/l ug/l ug/l	mg/l mg/l	ugh ugh ugh si o o too	<1.0 <1.0 <1.0 778 0.701
Date ug/1 ug/1 ug/1 070 0.028	<1.0 <1.0 <1.0	585 0.05	20 1.2 110 0.0100	<1.0 <1.0 <1.0 499 0.45
7/15/2003 <1.0 <1.0 1.0 402 <0.010	<1.0 <1.0 <1.0	622 0.142		<1.0 <1.0 <1.0 1090 0.409
8/15/2003 <1.0 10 742 0.024	<1.0 <1.0 <1.0	751 0.059	40 011 100 0.0070	<1.0 <1.0 <1.0 948 0.325
9/10/2003 11.0 100 0.115	<1.0 <1.0 <1.0	790 0.139	33 3.7 <1.0 509 0.0270 24 3.3 <1.0	<1.0 <1.0 <1.0 831 0.271
10/13/2003 110 110 0.026	<1.0 <1.0 <1.0	770 0.062	18 5.7 <1.0 500 0.0400	<1.0 <1.0 <1.0 700 0.162
11/10/2003 11.0 10 154 0.092	<1.0 <1.0 <1.0	862 0.046	23 6.5 <1.0 480 0.0270	<1.0 <1.0 <1.0 800 0.149
<u>12/12/2003</u> <1.0 <1.0 <1.0 434 0.052 1/15/2004 <1.0 <1.0 <1.0 480 0.052	<1.0 <1.0 <1.0	840 0.044	23 5.1 <1.0 468 0.0250	<1.0 <1.0 <1.0 844 0.142
0/0/2004 <1.0 <1.0 <1.0 424 0.088	<1.0 <1.0 <1.0	740 0.059	20 6.7 <1.0 63 0.0180	<1.0 <1.0 <1.0 25 0.166
<u>3/5/2004</u> <1.0 <1.0 <1.0 1580 0.071	<1.0 <1.0 <1.0	261 0.028 584 0.041	17 6.3 <1.0 472 0.0250	<1.0 <1.0 <1.0 908 0.266
4/2/2004 <1.0 <1.0 405 0.016	<1.0 <1.0 <1.0	584 0.041 670 0.064	24 6.7 <1.0 480 0.0630	<1.0 <1.0 <1.0 1070 0.368
5/7/2004 <1.0 <1.0 356 0.013	<1.0 <1.0 <1.0	428 0.039	15 4.8 <1.0 544 0.0130	<1.0 <1.0 <1.0 0.001
6/11/2004 <1.0 <1.0 290 <0.010	<1.0 <1.0 <1.0 <1.0	634 0.08	18 5.1 <1.0 522 0.1100	<1.0 <1.0 <1.0
7/13/2004 2.5 <1.0 <1.0 611 0.07	4110	734 0.155	21 6 <1.0 522 0.0850	<1.0 <1.0 <10 0.14
8/25/2004 <1.0 <1.0 372 0.045	11.0	704 0.184	18.7 6.5 <1.0 464 0.0800	<1.0 <1.0 <1.0 002 6.68
9/3/2004 <1.0 <1.0 <1.0 332 0.087	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0	736 0.083 6.80	18.9 6.9 <1.0 524 0.0260 7.11	<1.0 <1.0 <1.0 324 0.20
<u>10/18/2004</u> <1.0 <1.0 <1.0 280 <1.0 7.47	<1.0 <1.0 <1.0	780 0.065 6.70	17 9.2 <1.0 470 0.0200 7.10	
<u>11/26/2004</u> < <u>1.0</u> < <u>1.0</u> < <u>1.0</u> 340 0.0074 7.40	<1.0 <1.0 <1.0	790 0.038 6.80	16 8.7 <1.0 510 0.0160 7.00	<1.0 <1.0 <1.0 100 0.15 ND
17/20/2004 <1.0 <1.0 340 0.0094 7.30 12/20/2004 <1.0 <1.0 <1.0 340 0.0094 7.30	<1.0 <1.0 <1.0	790 0.038 ND	14 9 <1.0 500 0.0190 ND	<1.0 <1.0 <1.0 000 000 000
1/25/2005 <1.0 <1.0 <1.0 400 0.093 ND 1/25/2005 <5.0 <5.0 352 <0.139 7.30	<5.0 <5.0 <5.0	710 <0.139 6.80	14.4 7.83 <5.0 458 <0.139 7.00	<5.0 <5.0 <5.0 215 0.175 6.20
2/28/2005 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	696 0.074 6.80	16.1 10.7 <5.0 491 <0.046 7.20	<5.0 <5.0 <5.0 0.025 5.29
3/29/2005 <5.0 <0.0 000 000 0000 7.15	3.41 <2.0 <2.0	681 0.0781 6.85	20 10.4 <2.0 490 <0.0125 7.54	<2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <th< td=""></th<>
4/25/2005 8.88 22.0 2.0 2.0 2.00 2.00 7.00	3.37 <2.0 <7.0		26.6 12.6 <8.0 484 0.0197 7.33	<2.0 <2.0 <2.0 992 0.265 5.56
5/12/2005 <2.0 <2.0 <1.0 = 0.000 7.51	<2.0 <2.0 <2.0		14.1 10.4 <2.0 489 0.0223 7.06	<2.0 <2.0 <2.0 0.32 6.40 <5.0 <5.0 1000 0.32 6.40
6/9/2005 <2.0 <2.0 <2.0 0.000 0.000 7.30	<5.0 <5.0 <5.0		12 10 <5.0 440 0.0260 7.00	<3.0 <5.0 <5.0 824 0.22 6.07
7/7/2005 <5.0 <5.0 <5.0 <5.0 000 0.0424 7.13	<2.0 <5.0 <5.0	792 0.0218 6.55	7.8 9.5 <5.0 418 0.0208 6.80 8.3 10.4 <5.0 422 0.0362 6.92	<2.0 <5.0 <5.0 924 0.285 6.18
8/26/2005 <2.0 <0.0 5.0 0.0258 7.09	<2.0 <5.0 <5.0	816 0.0352 6.52	0.0 10.4 (0.0 122 0.0000 6.05	<2.0 <5.0 <5.0 800 0.191 6.66
9/16/2005 <2.0 <5.0 <5.0 020 0.0113 7.24	<2.0 <5.0 <5.0	814 0.0264 6.57	0.0 7.02	<2.0 <5.0 <5.0 928 0.156 5.95
10/14/2003 <2.0 <0.0 000 000 7.19	<2.0 <5.0 <5.0		7.4 11.9 20.0 070 000000000000000000000000000000	<pre><2.0 <5.0 <5.0 972 0.124 4.65</pre>
11/14/2005 <2.0 <0.0 5.0 0.00 0.0250 7.15	<2.0 <5.0 <5.0	782 0.029 6.63	7.1 10.2 <5.0 418 0.0378 6.96	
12/19/2005 <2.0 <5.0 <5.0 340 0.0359 7.15				

THE ARNOLD ENGINEERING CO. MARENGO, IL

			1																					
				Moll #1			l.	Monit	orina V	Vell #2				Monit	oring W	/ell #3					Outfall	Pond 4		
			toring \	/veii # i			ш	T	oning v	VOII // L			빌						ETHANE	ШZ				
	ANE	RACHLOROETHENE					TRICHLOROETHANE	ETRACHLOROETHENE	m				TRICHLOROETHANE	TETRACHLOROETHENE	ш	S			H	ETRACHLOROETHENE	Щ	SC		-
	ETHAN	光	ШZ	SC				Ŧ	TRICHLOROETHENE	SOLIDS			Ē	吉	CHLOROETHENE	SOLIDS			EI I	Ш	TRICHLOROETHENE	SOLIDS		
		E	뽀	SOLIDS			UE OE	OE	Ë	OL				SOE	Т Н	100			TRICHLORO	BO	Ē	SO		
	DR(BG	ET				HO HO	DR	ЭE				Ö	P D	ЫO				LO	LO	02			
			RO	ED			1	<u>ا</u> ۲	BRO	Щ,			되	土	SR	N N			5	Ъ	Ö	N N	_	
	TRICHLORO	5	ΓO	SSOLVE	_		1 OF	ACI	FLC	DISSOLVED	러		BIG	AC	글	SSOLVED	Ш		IRI	A P		SSOLVED	NICKEL	
	H H	RA	HO	SO	Х Ш			E	5 5	SSC	NICKEL			E	S	SS	NICKEL	-	111	E	BIG	DIS	PIC 10	Hd
	111	E	TRICHLOROETHENE	DIS	NICKEL	H	111	Щ	TR	DIG	UN NIC	Ha	111		TRI	<u> </u>		Hd		⊢ ЛІТ - 2'N				
LIMITS	200	5	5	1200		6.5-9	200	5	5	1200	0.1	6.5-9	200	5	5	1200	0.1000	6.5-9	ug/l	ug/l	ug/l	mg/l	mg/l	
Date	ug/l	ug/l	ug/l	mg/l	mg/l		ug/l	ug/l	ug/l	mg/l	mg/l		ug/l	ug/l	ug/l	mg/l 394	mg/l 0.0405	6.90	<2.0	<5.0	<5.0	746	0.132	6.07
1/17/2006		<5.0	<5.0	348	0.0102		<2.0	<5.0	<5.0	786	0.0162	6.44	8.2	12.8	<5.0 <5.0	394	0.0293	6.62	<2.0	<5.0	<5.0	912	0.137	3.75
2/10/2006		<5.0	<5.0	372	0.0182		<2.0	<5.0	<5.0	748	0.0362	6.25	8.5	12.6	<5.0	398	0.0537	6.63	<2.0		<5.0	726	0.144	4.88
3/10/2006		<5.0	<5.0	316	0.0144		<2.0	<5.0 <5.0	<5.0 <5.0	752 696	0.0344		7.9	11.8	<5.0	378	0.0253	6.54	<2.0	<5.0	<5.0	722	0.0997	6.18
4/10/2006		<5.0	<5.0		<0.0050		<2.0	<5.0	<5.0		0.0338		8	9.7	<5.0	446	0.0268	6.36	<2.0		<5.0	648	0.0493	6.15
5/15/2006		<5.0	<5.0	326	0.0087		<2.0	<5.0	<5.0		0.0424		9.6	11.5	<5.0	498	0.0936	6.42	<2.0		<5.0	672	0.0991	6.52
6/12/2006		<5.0	<5.0 <5.0	376 408	<.0050		<2.0	<5.0	<5.0		0.0304		8.7	14.6	<5.0	462	0.0207	6.33	<2.0		<5.0	708 668	0.0624	7.01
7/14/2006		<5.0 <5.0	<5.0		0.0172		<2.0	<5.0	<5.0		0.0526		9	13.4	<5.0	458	0.0357	7.05	<2.0	<5.0	<5.0 <5.0	610	0.0507	6.88
8/22/2006 9/15/2006		<5.0	<5.0		0.0077		<2.0	<5.0	<5.0	602	0.0259	6.78	6.9	12.0	<5.0	474	0.0355	6.90	<2.0 <2.0	<5.0 <5.0	<5.0	662	0.0579	6.17
10/13/2006		<5.0	<5.0		0.0175		<2.0	<5.0	<5.0	640	0.0219		8.7	13.9	<5.0	490	0.0183	7.23	<2.0		<5.0	672	0.0464	6.38
11/13/2006		<5.0	<5.0		0.0188	6.85	<2.0	<5.0	<5.0	624	0.022		9.31	13.9	< 5.0	452 424	0.0329	6.91	<2.0	<5.0	<5.0	552	0.0401	6.75
12/15/2006		<5.0	<5.0		0.0183		<2.0	<5.0	<5.0	550	0.0319		11.3	<5.0 15.5	<5.0 <5.0	424	0.0305	7.33	<2.0	<5.0	<5.0	556	0.0506	7.01
1/12/2007		<5.0	<5.0		0.019		<2.0	<5.0	<5.0	600 538	0.0765		12.1	18.0	<5.0	428	<0.005	6.54	<2.0		<5.0	500	0.0393	7.18
2/19/2007		<5.0	<5.0		0.0412		<2.0	<5.0 <5.0	<5.0 <5.0	538	0.0304		18.8	18.3	<5.0	520	0.0557	6.74	<2.0	<5.0	<5.0	532	0.0497	7.27
3/16/2007	<2.0	<5.0	<5.0		0.024 NS	7.24 NS	2.2 NS	<5.0 NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS 7.55
3/22/2007		NS	NS	NS 378	0.0322		<2.0	<5.0	<5.0	626	0.0642		<2.0	12.2	<5.0	532	0.0416		<2.0		<5.0	604	0.0426	7.54
4/23/2007		<5.0 <5.0	<5.0 <5.0		0.0322		<2.0	<5.0	<5.0	658	0.0975		13.6	16.0	<5.0	498	0.0589	7.12	<2.0		<5.0 <5.0	592 614	0.0274	7.5
5/11/2007		<5.0	<5.0		0.0142		<2.0	<5.0	<5.0	494	0.082		12.0	10.3	<5.0	462	0.0380	7.02	<2.0		< 5.0	630	0.0000	6.97
6/25/2007 7/13/2007	<2.0	<5.0	<5.0		< 0.0050		<2.0	<5.0	<5.0	492	0.0651	7.12	10.8	16.1	<5.0	466	0.0233	7.03	<2.0		<5.0	620	0.0427	6.78
8/10/2007		<5.0	<5.0		0.0129	7.32	<2.0	<5.0	<5.0	180	0.0072		12.3	16.1	<5.0	548	0.0238	7.17	<2.0		<5.0	594	0.0707	6.72
9/7/2007		<5.0	<5.0		0.0155	7.23	<2.0	<5.0	<5.0	348	0.0206		11.2	12.1	<5.0	436	0.0393	7.12	<2.0		<5.0	758	0.060	6.78
10/19/2007		<5.0	<5.0	342	0.0139	7.39	<2.0	<5.0	<5.0	546	0.0402		10.5	14.4	<5.0 <5.0	472	0.0200	7.07	<2.0		<5.0	722	0.050	6.08
11/16/2007		<5.0	<5.0		0.0059	7.04	4.9	<5.0	<5.0		0.0599		7.9	13.1	<5.0	530	0.0102	6.90	<2.0	and the second s	<5.0	784	0.088	6.18
12/17/2007		<5.0	<5.0	446	0.0075	7.04	<2.0	< 5.0	<5.0		0.0765		12.4	12.0	<5.0	536	0.0170	6.74	<2.0		<5.0	820	0.0794	6.1
1/18/2008			<5.0	386	0.0063	6.57	<2.0	<5.0 <5.0	<5.0 <5.0		0.0590		11.4	13	<5.0	510	0.0306	7.24	<2.0		<5.0	630	0.0479	6.46 5.89
2/18/2008		<5.0	<5.0	340	0.016	6.87	<2.0	<5.0	<5.0		0.0314	7	<2.0	12.8	<5.0	552	0.0134	6.86	<2.0		< 5.0	768	0.0454	
3/24/2008		<5.0 <5.0	<5.0 <5.0		0.0222	6.75	<2.0	<5.0	<5.0		0.0204	7.16	<2.0	10.5	<5.0	520	0.0211	6.78	<2.0		<5.0	652 664	0.0588	
4/18/2008					0.012	7.11	<2.0	<5.0	<5.0		0.0266	7.18	8.3	8.6	<5.0	514	0.0167	6.82	<2.0	<5.0	<5.0	004	0.002	1
5/16/2008	0 <2.0	<0.0		LUL	510.00																			

1

THE ARNOLD ENGINEERING CO. MARENGO, IL

								Monit	toring \	Vell #2				Monit	toring W	/ell #3					Outfal	Pond 4		
		Moni	toring v	Vell #1					tornig .				111						Ш	ш				
LIMITS Date 6/19/2008 7/29/2008 8/25/2008 9/22/2008 10/17/2008 11/24/2008 12/30/2008 1/21/2008 2/23/2008 3/20/2008 4/27/2008	<pre><2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0</pre>	Moni Moni ELLBACHLOROETHENE 2 2 2 2 2 2 2 2 2 2 2 2 2	Vering V Sector 2 Vering V Sector 2 Vering V	Vell #1 S C C C C C C C C C C C C C	<0.0050 0.0094 <0.0050 <0.0050 0.00505	7.77 7.42 7.55 7.88 7.72 8.02	HHANE HICHLOROETHANE 11 11 11 11 11 11 11 11 11 1	005 005 005 005 005 005 005 005 005 005	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	S C S C S S C C S S C C S S C C S S C C S S C C S S C C S S C C S S C C S C S C S C S C S C S C S C S C S C S C S C S C S S C C S S C C S S C C S S C C S S C C S S C C S S C C S S C C S S C S S C C S S C C S S C C S S C C S S C C S S C S S C S S C S S C S S C S S C S S C S S S C S S S C S S S S S C S S S S S S S S S S S S S	L	<u>Т</u> 6.5-9 7.72 7.04 7.03 7.26 7.21 7.18 7.66 7.3 7.3 7.3 7.4	URANCE STATES ST	HENE HENE HENE HENE HENE S UQ/I 7.5 11.5 9.5 7.4 9.1 10.8 10.6 12.8 12.2 11.2 11	B B	SQUID SS Q J A C SS Q A C C SS C C C C SS C C C C SS C C C C	L L L L L L L L L L L L L L	<u></u> 6.5-9 7.57 7.17 7.18 7.14 7.26 7.3 7.34 7.53 7.48 7.68 7.26	III III	ug/l <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	UDARY UDARY UDARY UDARY UDARY UDARY UDARY (5.0 (5.0 (5.0) (S C C C C C C C C C C C C C C C C C C C	L CLASS mg/I 0.101 0.0851 0.0796 0.0508 0.0432 0.342 0.0362 0.0287 0.0216 0.0312 0.0312 0.0312	<u>Т</u> 7.08 6.65 6.38 6.67 6.96 7.09 7.16 7.56 7.2 7.37 7.1
																								J

Electronic Filing - Received, Clerk's Office : 06/27/2016 - PCB 2016-097*** Semi-annual monitoring report of the monthly groundwater sampling results

ARNOLD MAGNETIC TECHNOLOGIES MARENGO, IL PERMIT NO.: 2006-EO-0690

	N	lonito	ring V	Vell	#1		M	onito	ring V	Vell #	#2		Μ	lonitor	ring W	'ell #	3			Ou	tfall F	ond	4	
Permit Parameters	1,1,1- TRICHLOROETHANE	TETRACHLOROETHENE	TRICHLOROETHYLENE	DISSOLVED SOLIDS	NICKEL	Hd	1,1,1- TRICHLOROETHANE	TETRACHLOROETHENE	TRICHLOROETHYLENE	DISSOLVED SOLIDS	NICKEL	Н	1,1,1- TRICHLOROETHANE	TETRACHLOROETHENE	TRICHLOROETHYLENE	DISSOLVED SOLIDS	NICKEL	Hd	1,1,1- TRICHLOROETHANE	TETRACHLOROETHENE	TRICHLOROETHYLENE	DISSOLVED SOLIDS	NICKEL	Hd
Permit Parameter Limits	0.2 mg/l	0.005 mg/l	0.005 mg/l	1,200 mg/l	0.1 mg/l	6.5 - 9.0 SU	0.2 mg/l	0.005 mg/l	0.005 mg/l	1,200 mg/l	0.1 mg/l	6.5 - 9.0 SU	0.2 mg/l	0.005 mg/l	0.005 mg/l	1,200 mg/l	0.1 mg/l	6.5 - 9.0 SU	NO LIMI					
Sample Date		Sample I	Results U	Inits of	Measure				Results U					Sample R				011	-	Sample R				SU
Sample Date	mg/l	mg/l	mg/l	mg/l	mg/l	SU	mg/l	mg/l	mg/l	mg/l	mg/l	SU	mg/l	mg/l	mg/l	mg/l	mg/l	SU	mg/l	mg/l	mg/l	mg/l	mg/l	6.05
5/15/2009	<0.005	<0.005	<0.005	318	<0.005	7.56	<0.005	<0.005	<0.005	360	0.013	7.47	0.0267	0.0111	< 0.005	416	0.0241	7.3	< 0.005	<0.005	<0.005	652 522	0.0441	7.71
6/15/2009	<0.005	<0.005	<0.005	350	<0.0050	7.51	<0.005	<0.005	<0.005	354	0.0133	7.45	0.0274	0.0091	<0.005	474	0.0279	7.18	<0.005	<0.005	<0.005	474	0.0332	7.8
7/10/2009	<0.005	<0.005	<0.005	278	<0.0050	7.38	<0.005	<0.005	< 0.005	448	0.0278	7.26	< 0.005	<0.005	<0.005	284 294	0.0198	7.18	<0.005	< 0.005	< 0.005	496	0.0221	7.74
8/14/2009	<0.005	<0.005	<0.005	352	<0.0050	7.43	<0.005	< 0.005	< 0.005	412	0.0375	7.13	0.102	0.0104	<0.005	432	0.0237	7.2	< 0.005	< 0.005	<0.005	600	0.0339	7.2
9/11/2009	< 0.005	<0.005	< 0.005	380	< 0.0050	7.40	< 0.005	< 0.005	<0.005	478 554	0.0431	7.15	0.0874	0.0094	<0.005	348	0.0090	7.56	<0.005	< 0.005	<0.005	718	0.0557	6.49
10/16/2009	<0.005	<0.005	<0.005	368	<0.0050	7.50	<0.005	<0.005	< 0.005	3300	0.068	7.14	0.125	0.0034	<0.005	460	0.0360	7.16	<0.005	< 0.005		2550	0.0482	6.65
11/13/2009	< 0.005	< 0.005	< 0.005	2130	<0.0050 <0.0050	7.35	<0.005	<0.005	< 0.005	500	0.0499	7.05	0.123	0.0093	<0.005	444	0.0122	7.19	<0.005	<0.005	<0.005	703	0.0664	6.25
12/18/2009	< 0.005	< 0.005	<0.005	398 412	<0.0050	7.41	< 0.005	<0.005	<0.005	520	0.0555	7.12	0.0469	0.0097	<0.005	432	0.0164	7.26	<0.005	< 0.005	< 0.005	482	0.0428	6.56
1/15/2010 2/12/2010	<0.005	<0.005	<0.005	236	<0.0050	6.97	< 0.005	<0.005	<0.005	394	0.0438	7.12	0.0405	0.0128	<0.005	412	0.0087	7.01	< 0.005	< 0.005	<0.005	560	0.0546	6.11
3/15/2010	<0.005	<0.005	<0.005	302	<0.0050	7.29	< 0.005	<0.005	<0.005	482	0.0687	7.09	0.591	0.0132	<0.005	426	0.0192	7.63	< 0.005	<0.005	<0.005	674	0.0521	6.43
4/16/2010	<0.005	< 0.005	<0.005	376	<0.0050	7.05	<0.005	< 0.005	<0.005	472	0.0646	7.07	0.483		< 0.005	468	0.0314	7.01	<0.005	<0.005	<0.005	698	0.246	6.52
5/14/2010	<0.005	<0.005	<0.005	378	<0.0050	6.55	< 0.005	<0.005	<0.005	206	0.0124	7.04	0.482	0.0112	<0.005	464	0.0406	7.09	<0.005	<0.005	<0.005	612	0.114	6.75

Electronic Filing - Received, Clerk's Office : 06/27/2016 - PCB 2016-097*** Semi-annual monitoring report of the monthly groundwater sampling results

ARNOLD MAGNETIC TECHNOLOGIES MARENGO, IL PERMIT NO.: 2006-EO-0690

	N	Ionito	oring \	Vell	#1		M	lonito	ring V	Vell a	#2			М	onitor	ing W	ell #	3			Ou	itfall F	ond	4		
Permit Parameters	1,1,1- TRICHLOROETHANE	TETRACHLOROETHENE	TRICHLOROETHYLENE	DISSOLVED SOLIDS	NICKEL	Hd	1,1,1- TRICHLOROETHANE	TETRACHLOROETHENE	TRICHLOROETHYLENE	DISSOLVED SOLIDS	NICKEL	Ηd		1,1,1- I RICHLOHOE I HANE	TETRACHLOROETHENE	TRICHLOROETHYLENE	DISSOLVED SOLIDS	NICKEL	Hd	1,1,1- TRICHLOROETHANE	TETRACHLOROETHENE	TRICHLOROETHYLENE	DISSOLVED SOLIDS	NICKEL	Hd	Total Residual Chlorine
Permit Parameter Limits	0.2 mg/l	l/6m 200.0 Sample	0.005 mg/l	5 1,200 mg/l	l/bm 1.0 Measure	6.5 - 9.0 SU	0.2 mg/l	0.005 mg/l	0.005 mg/l	1,200 mg/l	0.1 mg/l	6.5 - 9.0 SU		0.2 mg/l	0.005 mg/l	€ 0.005 mg/l	1,200 mg/l	0.1 mg/l	6.5 - 9.0 SU	NO LIMI				R CLASS		
Sample Date	mg/l	mg/l	mg/l	mg/l	mg/l	SU	mg/l	mg/l	mg/l	mg/l	mg/l	SU	m		Sample R mg/l	mg/l	mg/l	mg/l	SU	mg/l	mg/l	mg/l	mg/I	of Measu mg/l	SU 1	mg/l
4/16/2010	< 0.005	<0.005		376		7.05	<0.005	<0.005	<0.005	472	0.0646	7.07	-			<0.005	468	0.0314	7.01	<0.005	<0.005		698	0.246	6.52	mg/i
5/14/2010	< 0.005	< 0.005		378		6.55	<0.005	< 0.005	< 0.005	206	0.0124	7.04	in the	3.4412	0.0112	< 0.005	464	0.0406	7.09	<0.005	< 0.005	< 0.005	612	0.114	6.75	-
6/14/2010	<0.005	<0.005	< 0.005	358	<0.0050	6.74	<0.005	<0.005	< 0.005	388	0.0761	6.81	100	2871	C 0116	<0.005	410	0.0202	6.99	<0.005	< 0.005	<0.005	474	0.0415	6.98	
7/16/2010	<0.005	<0.005	Lange and the second	432	<0.0050	7.27	<0.005	< 0.005	< 0.005	634	0.0977	6.99		P050	B.0094B	<0.005	552	0.0302	7.07	<0.005	<0.005	< 0.005	570	0.0443	7.46	
8/13/2010	<0.005	<0.005	<0.005	400		7.07	<0.005	<0.005	<0.005	504	0.103	6.63	Contraction of the local division of the loc	0.847	0.0115	<0.005	576	0.0292	6.8	<0.005	<0.005		568	0.0579	6.81	
9/17/2010	<0.005	<0.005		434	<0.0050	7	<0.005	<0.005	<0.005	608		6.78		0.167	0.00870	< 0.005	422	0.0141	7.03	<0.005	<0.005		638	0.0856	6.64	
10/15/2010	<0.005	<0.005		334	<0.0050	6.65	<0.005	<0.005	< 0.005	414		6.75		0.160	0.00000	<0.005	360	0.0155	6.86	<0.005	<0.005	<0.005	616	0.115	6.51	
11/12/2010	<0.005	<0.005		354	-	6.93	<0.005	<0.005	<0.005	512	And in case of the local division of the loc	6.75		0106	<0.005	<0.005	634	0.0249	7.11	<0.005	<0.005		625	0.0725	6.95	
12/10/2010	< 0.005	<0.005		328		7.09	<0.005	< 0.005	<0.005	440		6.95		0709	<0.005	< 0.005	358	0.0356	7.17	<0.005	<0.005		466	0.0526	6.88	
2/18/2011	<0.005 <0.005	< 0.005		426 350	and and and and an and a state of the state	7.5	<0.005 <0.005	<0.005 <0.005	<0.005	586 514	0.0528	7.26	_	0756	ISBASTI ISBASS	<0.005 <0.005	462 522	0.0298	7.33	<0.005	<0.005		510 340	0.0474	7.75	
3/11/2011	<0.005	< 0.005	1	342		6.92	< 0.005	< 0.005	< 0.005	514	E	6.85	_		0.0050	< 0.005		0.0228	6.89	<0.005	< 0.005			0.044	7.29	
0/11/2011	<0.005	1 < 0.000	1 < 0.000	042	0.0000	0.92	1 <0.005	0.005	1 < 0.003	1 510	0.0092	0.00		0910	0.0000	10.003	500	0.0220	0.03	1 <0.005	L	1		eter Limit		and the second se
4/18/2011																					None		r urum	1/6m 1/0	6.5-9.0 SU	No Standard
5/16/2011				N	ew WPCP	issued (2	2011-EO-1	001) whi	ich no Ior	nger red	quires the	sampli	ng of a	any mo	onitoring v	vells				New W	/CPC do	es not re	guire	0.0548		<0.05
5/16/2011 6/23/2011 7/11/2011 8/23/2011 9/19/2011																				1		these an		0.0522 0.0422 0.0284 0.0267 0.0283	6.9 7.11 7.23 6.97 7.05	<0.05 <0.05 <0.05 0.13 0.42
10/20/2011	1																							0.0325	7.98	0.07

100 South Wacker Drive Suite 500 Chicago, Illinois 60606 www.aecom.com

312 939 4198 fax

Technical Memorandum

То	Nadine Marion, Arnold Magnetic Technologies	
сс	Julie Johnson, AECOM Pat Dunne, AECOM	
Subject	Marengo Wastewater Permit Assistance 2016 Groundwater Mounding Analysis	
From	Dan McHale, AECOM	
Date	April 25, 2016	

AECOM Technical Services, Inc. (AECOM) evaluated potential effects of percolating water from Arnold Magnetic Technologies' (AMT) wastewater pond system on groundwater contaminant transport in the vicinity of the Marengo, Illinois facility. As detailed below, AECOM's analysis indicates that potential leakage from the surface water ponds, as well as infiltration from the associated percolation field, has no significant impact on shallow groundwater flow gradients, and would therefore not significantly impact hydraulic contaminant transport at the site.

Approach

Water percolating at ground surface (a recharge area) generally has the potential to alter groundwater flow, and could consequently affect the movement of existing groundwater contamination by locally altering groundwater flow gradients. The mechanism by which this could occur includes:

- Water continuously discharged at ground surface percolates vertically through the ٠ unsaturated zone under influence of gravity to the shallow groundwater table;
- Over time, the groundwater table builds up (mounds) locally beneath the percolation area due to concentrated recharge;
- The mounded groundwater increases the local hydraulic gradient, thereby increasing • groundwater contaminant velocity; and,
- Mounded groundwater possibly alters groundwater flow direction, thereby altering groundwater contaminant transport direction, relative to natural/background groundwater flow direction, typically by creating a radially-outward groundwater flow pattern emanating from the groundwater mound.

AECOM evaluated the potential for groundwater mounding impacts due to percolating water associated with AMT's pond system discharge. The pond system discharges water to a 16-acre percolation field located in the southwestern portion of the site. AECOM recognizes that leakage may also occur beneath the four-pond system itself, as well as beneath associated drainage ditches. We focused on evaluating the mounding associated with the percolation field, where the majority of the

water likely percolates, as the worst-case scenario. AECOM evaluated mounding using groundwater contour maps presented in the March 2016 Weaver CSI Report, and by performing a groundwater mounding analysis using analytical techniques developed by Hantush (1967).

Groundwater Contour Map Interpretation

AECOM evaluated groundwater contour maps developed by Weaver which represent the shallow groundwater system at the site during April 2015, October 2015 and February 2016 field activities. The Weaver maps are provided as Attachment 1.

Localized groundwater recharge areas typically are characterized by groundwater contours with higher elevations than the surrounding aquifer, often with high elevation contour lines wrapping around the recharge area and associated groundwater flow lines diverging radially. These signature contours and flow lines are not apparent in the vicinity of the ponds or the percolation field. The groundwater contours are relatively smooth, and do not diverge or wrap around the percolation field. Divergence would be expected if the volume of percolating groundwater were sufficient to cause sustained groundwater mounding beneath the area. Groundwater flow directions (shown as red arrows in Attachment 1) generally indicate relatively straight downgradient flow directions with little radial deviation.

Based on review of the Weaver contour maps, AECOM concluded that percolating groundwater has a relatively minor impact on groundwater levels at the AMT site. The minor nature of any impact is likely due to the relatively high hydraulic conductivity of site soils, which has the effect of dampening and dissipating mounding buildup relatively quickly, as well as a limited volume of water percolating over a large area.

Mounding Analysis

AECOM performed a groundwater mounding analysis to confirm the accuracy of the groundwater contour maps. The mounding analysis is based on analytical techniques developed by Hantush (Hantush, 1967), and incorporated into a spreadsheet format by the United States Geological Survey (USGS, 2010). Inputs for AECOM's mounding analysis are provided below and in Attachment 2:

- Recharge (percolation) rate = 0.027 feet per day. This value is based on information in AMT's wastewater permit application: 140,000 gallons per day are pumped from the onsite deep well and added to the water recycling system.
- Specific yield of aquifer (S_y) = 0.2 (literature value).
- Hydraulic conductivity (K) = 136 feet per day (March 2016 Weaver CSI Report).
- Basin size = 16 acres or 696,960 square feet (March 2016 Weaver CSI Report).
- Aquifer thickness = 70 feet (March 2016 Weaver CSI Report).

The mounding analysis indicates a maximum groundwater mound of approximately one (1) foot after 1,000 days of continuous, uninterrupted groundwater percolation. Based on the Weaver groundwater

contour maps, this value is less than natural variations observed in the groundwater level over the course of a calendar year.

AECOM's mounding analysis is likely conservative because it assumes continuous, uninterrupted (steady-state) percolation of the maximum available water. Additionally, the analysis is conservative in that the results do not include mounding dissipation that would occur during times of diminished or no percolation, and do not account for other water losses such as evapotranspiration, which could significantly diminish the quantity of water reaching the groundwater table.

Conclusions

AECOM's mounding analysis results are consistent with our interpretation of the Weaver groundwater contour maps. Potential leakage from the pond system is not sufficient to alter groundwater flow conditions. Accordingly, as discussed in AECOM's March 17, 2016 memorandum, AMT's pond system does not appear to be a likely source of contaminant loading to the area aquifer. Any infiltration from the percolation field is not sufficient to materially alter local groundwater gradients.

Theoretically (based on the Hantush analysis), some groundwater mounding would be expected regardless of the volume of percolating water. However, the height of groundwater mounding associated with AMT's pond system appears to be relatively small, and is less than the magnitude of natural fluctuation/variation observed over one calendar year of groundwater level observation. According to the Weaver data, the observed fluctuation was approximately three (3) feet in the vicinity of the percolation field. AECOM's finding is consistent with groundwater flow conditions depicted in site groundwater contour maps produced by Weaver, and suggests that unsaturated flow conditions exist beneath the percolation field. The unsaturated flow condition increases the residence time of the discharge water in the soil zone between the ground surface and water table, and promotes increased attenuation (*e.g.,* via adsorption, volatilization, colloidal filtering, etc.) of any chemicals in the discharge water.

AECOM's mounding analysis is a highly conservative estimate, as the analysis assumes that all water discharged from the pond system reaches the water table at the percolation field, pond discharge is continuous and uninterrupted (mounding is never allowed to dissipate) and does not account for evapotranspiration (in the ponds or when discharged to the percolation field), losses to the unsaturated zone, losses during the coolant process, etc.

Groundwater contour maps developed by Weaver and AECOM's mounding analysis indicate that mounding is not significant, and associated impacts on existing groundwater contamination are unlikely.

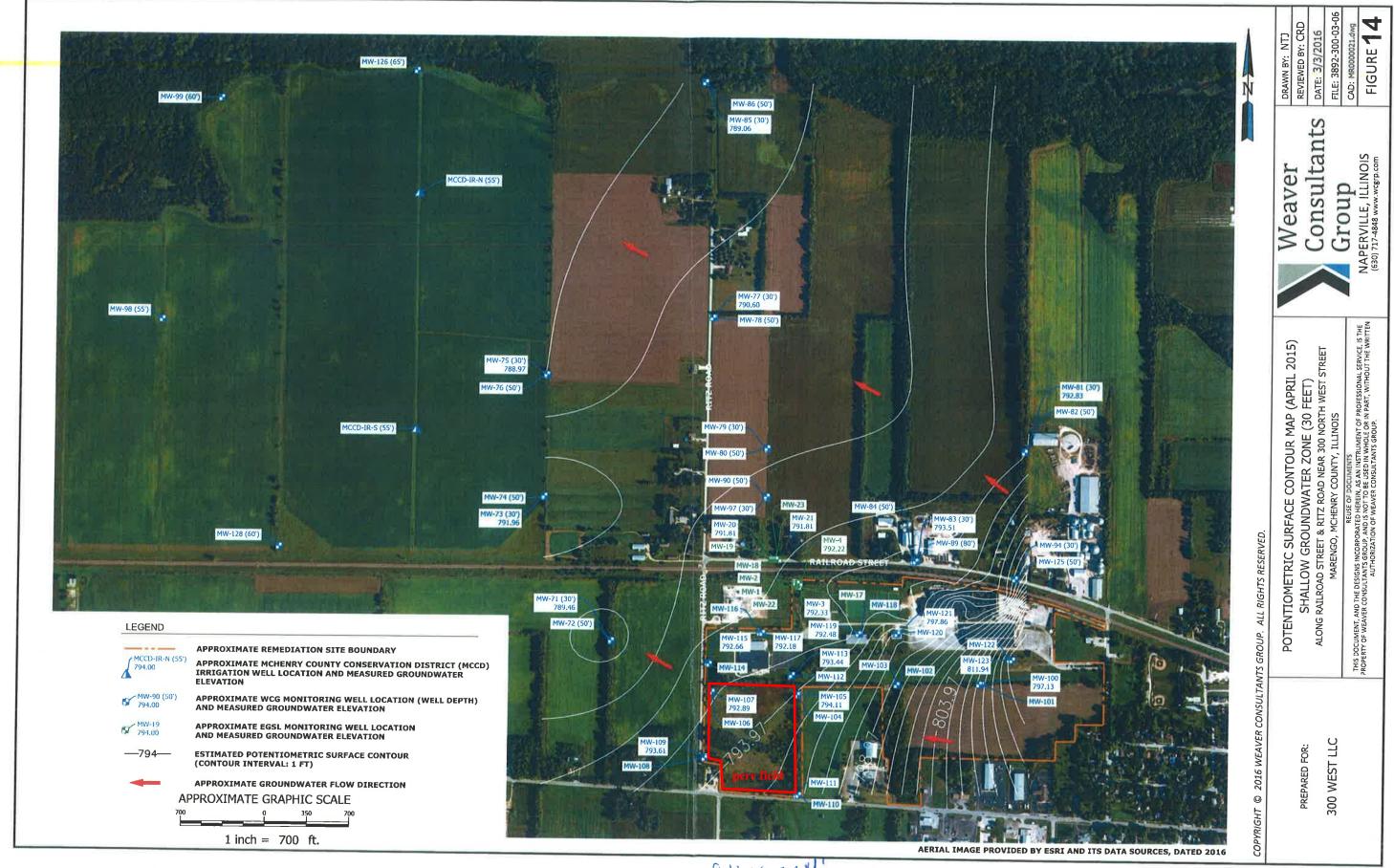
Limitations

AMT requested that AECOM qualitatively evaluate AMT's pond system and potential effects of the system on area groundwater quality based on currently-available site information generated by others. The statements and opinions presented herein are based on professional judgment, previous experience at similar sites, and AECOM's review of the provided investigation documents describing the general design of the facility pond system and area groundwater conditions.

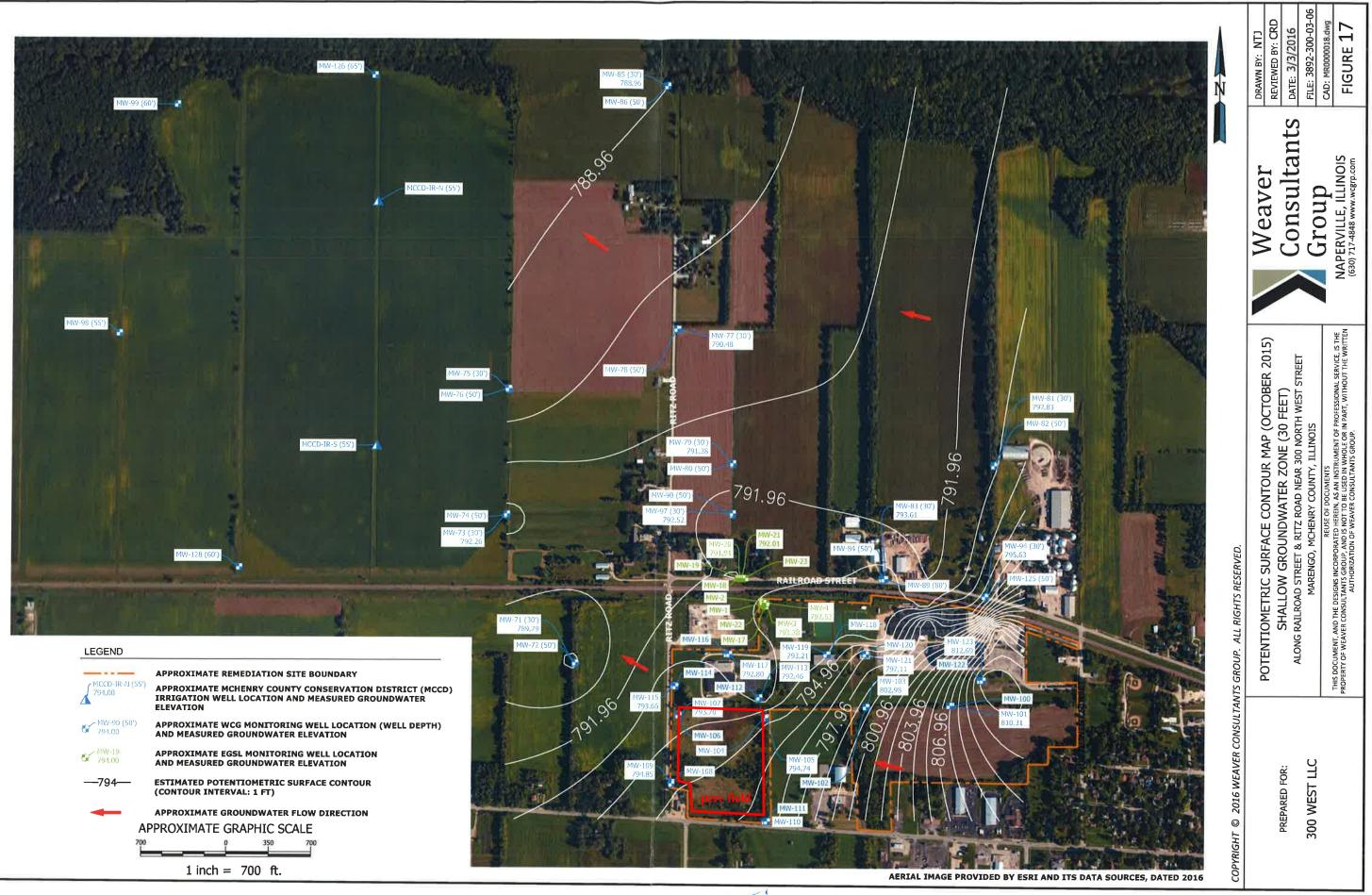
AECOM made several conservative assumptions in the evaluation where site-specific information was unavailable.

AECOM makes no warranties, either express or implied, regarding the estimates, opinions and conclusions presented herein.

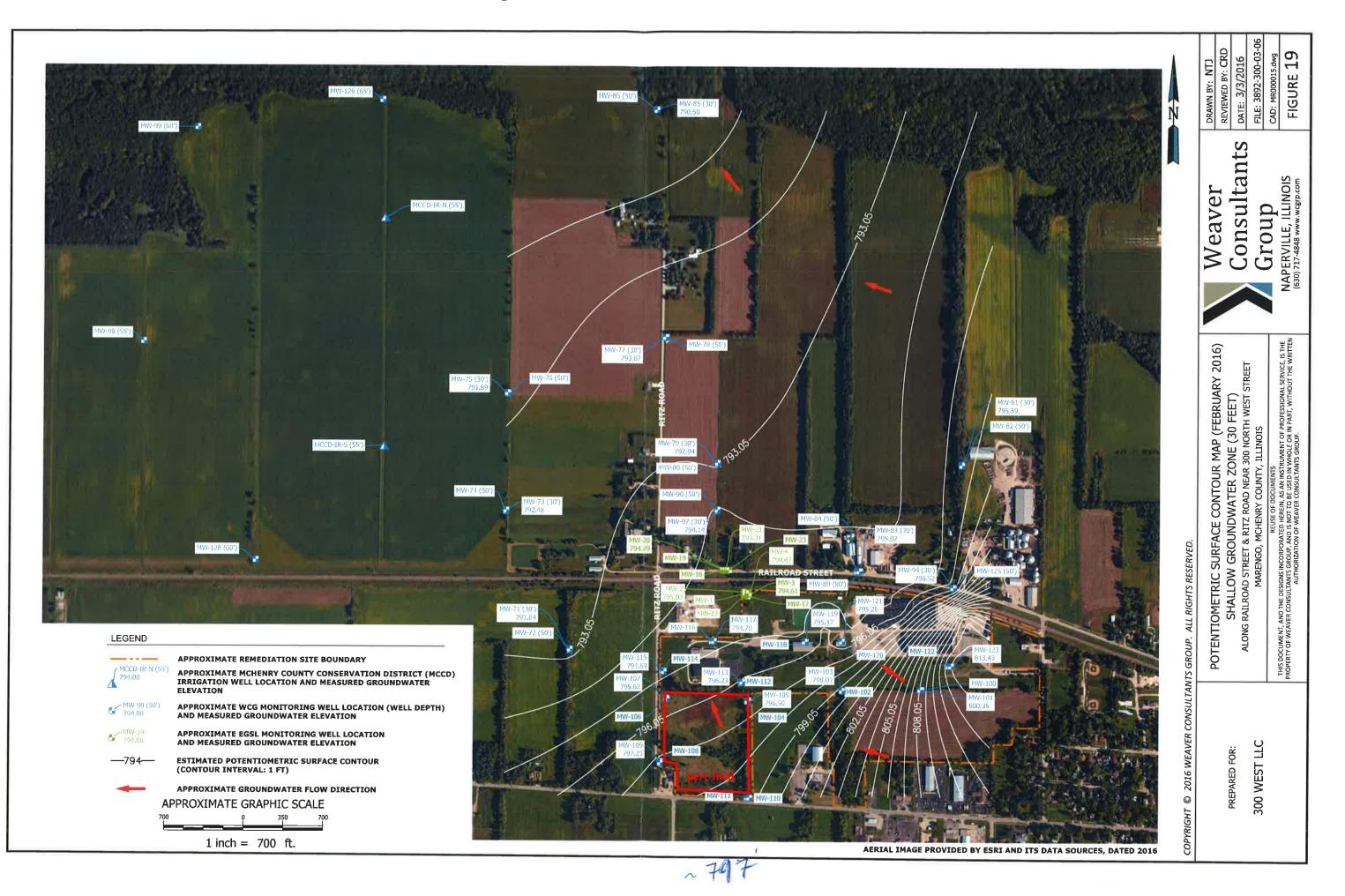
Further, AECOM does not warrant the veracity of the findings presented in the site documents completed by third parties and used by AECOM in the generation of this memorandum. Site conditions, or certain indicators of the presence of hazardous substances or other constituents, may have been latent, inaccessible, unobservable, or not reported. AECOM cannot represent that the pond system or the area aquifer do not contain chemicals at detectable concentrations beyond those documented in the reports provided for AECOM review.


References

Hantush, M.S., 1967, *Growth and Decay of Groundwater Mounds in Response to Uniform Percolation*, Water Resources Research, v. 3, p. 227-234.


USGS Scientific Investigations Report 2010-5102, http://pubs.usgs.gov/sir/2010/5102/

Attachments


Attachment 1 – Groundwater Contour Maps (March 2016 Weaver CSI Report) Attachment 2 – Mounding Analysis Results

perchell = 794

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aguifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aguifer thickness are calculated.

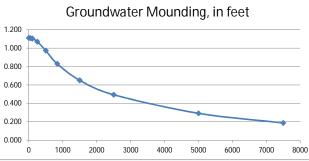
Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

		use consistent units (e.g. feet & days or inches & hours)	Conversion Table	4
ut Values			inch/hour feet/o	Jay
0.0269	R	Recharge (infiltration) rate (feet/day)	0.67	1.33
0.200	Sy	Specific yield, Sy (dimensionless, between 0 and 1)		
136.00	К	Horizontal hydraulic conductivity, Kh (feet/day)*	2.00	4.00 In the report accompanying this spreadsheet
418.000	х	1/2 length of basin (x direction, in feet)		(USGS SIR 2010-5102), vertical soil permeability
418.000	у	1/2 width of basin (y direction, in feet)	hours days	(ft/d) is assumed to be one-tenth horizontal
1000.000	t	duration of infiltration period (days)	36	1.50 hydraulic conductivity (ft/d).
70.000	hi(0)	initial thickness of saturated zone (feet)		

maximum thickness of saturated zone (beneath center of basin at end of infiltration period) maximum groundwater mounding (beneath center of basin at end of infiltration period)

Mounding, in in x direction, in

Ground-


water

h(max) ∆h(max)

Distance from center of basin

Inpu

		feet		feet
lato Now	Re-Calcula	0	1.112	
late NOW	Re-Calcula	50	1.110	
		100	1.105	
Cro		250	1.072	
Gro		500	0.974	
	1.200 -	836	0.832	
	1.000	1500	0.651	
	1.000 -	2500	0.495	
	0.800 -	5000	0.293	
		7,500	0.189	
	0.600 -			

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

100 South Wacker Drive Suite 500 Chicago, Illinois 60606 www.aecom.com

312 939 4198 fax

Technical Memorandum

То	Nadine Marion, Arnold Magnetic Technologies	
сс	Julie Johnson, AECOM Pat Dunne, AECOM	
Subject	Marengo Wastewater Permit Assistance 2016 Groundwater Mounding Analysis	
From	Dan McHale, AECOM	
Date	April 25, 2016	

AECOM Technical Services, Inc. (AECOM) evaluated potential effects of percolating water from Arnold Magnetic Technologies' (AMT) wastewater pond system on groundwater contaminant transport in the vicinity of the Marengo, Illinois facility. As detailed below, AECOM's analysis indicates that potential leakage from the surface water ponds, as well as infiltration from the associated percolation field, has no significant impact on shallow groundwater flow gradients, and would therefore not significantly impact hydraulic contaminant transport at the site.

Approach

Water percolating at ground surface (a recharge area) generally has the potential to alter groundwater flow, and could consequently affect the movement of existing groundwater contamination by locally altering groundwater flow gradients. The mechanism by which this could occur includes:

- Water continuously discharged at ground surface percolates vertically through the ٠ unsaturated zone under influence of gravity to the shallow groundwater table;
- Over time, the groundwater table builds up (mounds) locally beneath the percolation area due to concentrated recharge;
- The mounded groundwater increases the local hydraulic gradient, thereby increasing • groundwater contaminant velocity; and,
- Mounded groundwater possibly alters groundwater flow direction, thereby altering groundwater contaminant transport direction, relative to natural/background groundwater flow direction, typically by creating a radially-outward groundwater flow pattern emanating from the groundwater mound.

AECOM evaluated the potential for groundwater mounding impacts due to percolating water associated with AMT's pond system discharge. The pond system discharges water to a 16-acre percolation field located in the southwestern portion of the site. AECOM recognizes that leakage may also occur beneath the four-pond system itself, as well as beneath associated drainage ditches. We focused on evaluating the mounding associated with the percolation field, where the majority of the

water likely percolates, as the worst-case scenario. AECOM evaluated mounding using groundwater contour maps presented in the March 2016 Weaver CSI Report, and by performing a groundwater mounding analysis using analytical techniques developed by Hantush (1967).

Groundwater Contour Map Interpretation

AECOM evaluated groundwater contour maps developed by Weaver which represent the shallow groundwater system at the site during April 2015, October 2015 and February 2016 field activities. The Weaver maps are provided as Attachment 1.

Localized groundwater recharge areas typically are characterized by groundwater contours with higher elevations than the surrounding aquifer, often with high elevation contour lines wrapping around the recharge area and associated groundwater flow lines diverging radially. These signature contours and flow lines are not apparent in the vicinity of the ponds or the percolation field. The groundwater contours are relatively smooth, and do not diverge or wrap around the percolation field. Divergence would be expected if the volume of percolating groundwater were sufficient to cause sustained groundwater mounding beneath the area. Groundwater flow directions (shown as red arrows in Attachment 1) generally indicate relatively straight downgradient flow directions with little radial deviation.

Based on review of the Weaver contour maps, AECOM concluded that percolating groundwater has a relatively minor impact on groundwater levels at the AMT site. The minor nature of any impact is likely due to the relatively high hydraulic conductivity of site soils, which has the effect of dampening and dissipating mounding buildup relatively quickly, as well as a limited volume of water percolating over a large area.

Mounding Analysis

AECOM performed a groundwater mounding analysis to confirm the accuracy of the groundwater contour maps. The mounding analysis is based on analytical techniques developed by Hantush (Hantush, 1967), and incorporated into a spreadsheet format by the United States Geological Survey (USGS, 2010). Inputs for AECOM's mounding analysis are provided below and in Attachment 2:

- Recharge (percolation) rate = 0.027 feet per day. This value is based on information in AMT's wastewater permit application: 140,000 gallons per day are pumped from the onsite deep well and added to the water recycling system.
- Specific yield of aquifer (S_y) = 0.2 (literature value).
- Hydraulic conductivity (K) = 136 feet per day (March 2016 Weaver CSI Report).
- Basin size = 16 acres or 696,960 square feet (March 2016 Weaver CSI Report).
- Aquifer thickness = 70 feet (March 2016 Weaver CSI Report).

The mounding analysis indicates a maximum groundwater mound of approximately one (1) foot after 1,000 days of continuous, uninterrupted groundwater percolation. Based on the Weaver groundwater

contour maps, this value is less than natural variations observed in the groundwater level over the course of a calendar year.

AECOM's mounding analysis is likely conservative because it assumes continuous, uninterrupted (steady-state) percolation of the maximum available water. Additionally, the analysis is conservative in that the results do not include mounding dissipation that would occur during times of diminished or no percolation, and do not account for other water losses such as evapotranspiration, which could significantly diminish the quantity of water reaching the groundwater table.

Conclusions

AECOM's mounding analysis results are consistent with our interpretation of the Weaver groundwater contour maps. Potential leakage from the pond system is not sufficient to alter groundwater flow conditions. Accordingly, as discussed in AECOM's March 17, 2016 memorandum, AMT's pond system does not appear to be a likely source of contaminant loading to the area aquifer. Any infiltration from the percolation field is not sufficient to materially alter local groundwater gradients.

Theoretically (based on the Hantush analysis), some groundwater mounding would be expected regardless of the volume of percolating water. However, the height of groundwater mounding associated with AMT's pond system appears to be relatively small, and is less than the magnitude of natural fluctuation/variation observed over one calendar year of groundwater level observation. According to the Weaver data, the observed fluctuation was approximately three (3) feet in the vicinity of the percolation field. AECOM's finding is consistent with groundwater flow conditions depicted in site groundwater contour maps produced by Weaver, and suggests that unsaturated flow conditions exist beneath the percolation field. The unsaturated flow condition increases the residence time of the discharge water in the soil zone between the ground surface and water table, and promotes increased attenuation (*e.g.,* via adsorption, volatilization, colloidal filtering, etc.) of any chemicals in the discharge water.

AECOM's mounding analysis is a highly conservative estimate, as the analysis assumes that all water discharged from the pond system reaches the water table at the percolation field, pond discharge is continuous and uninterrupted (mounding is never allowed to dissipate) and does not account for evapotranspiration (in the ponds or when discharged to the percolation field), losses to the unsaturated zone, losses during the coolant process, etc.

Groundwater contour maps developed by Weaver and AECOM's mounding analysis indicate that mounding is not significant, and associated impacts on existing groundwater contamination are unlikely.

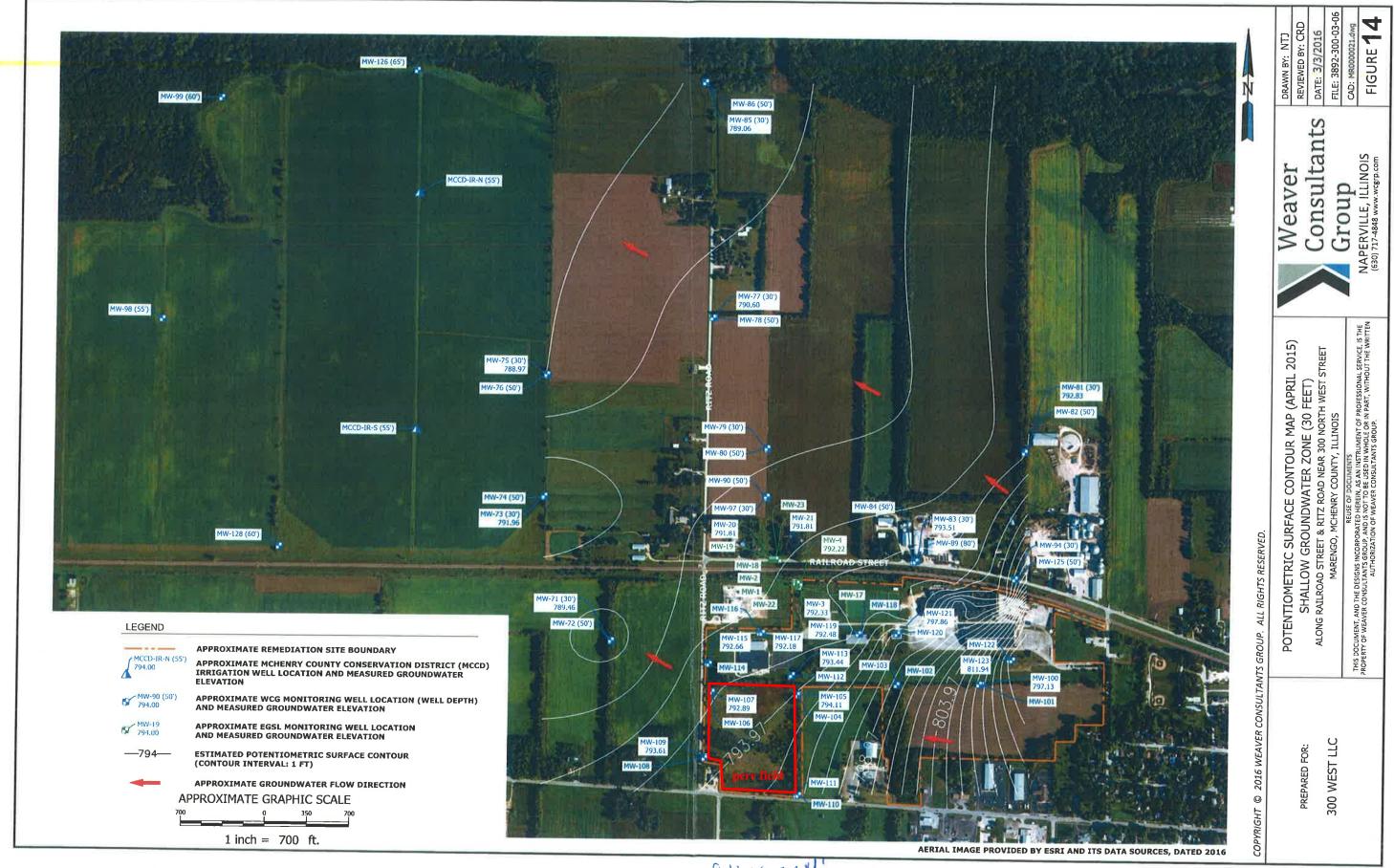
Limitations

AMT requested that AECOM qualitatively evaluate AMT's pond system and potential effects of the system on area groundwater quality based on currently-available site information generated by others. The statements and opinions presented herein are based on professional judgment, previous experience at similar sites, and AECOM's review of the provided investigation documents describing the general design of the facility pond system and area groundwater conditions.

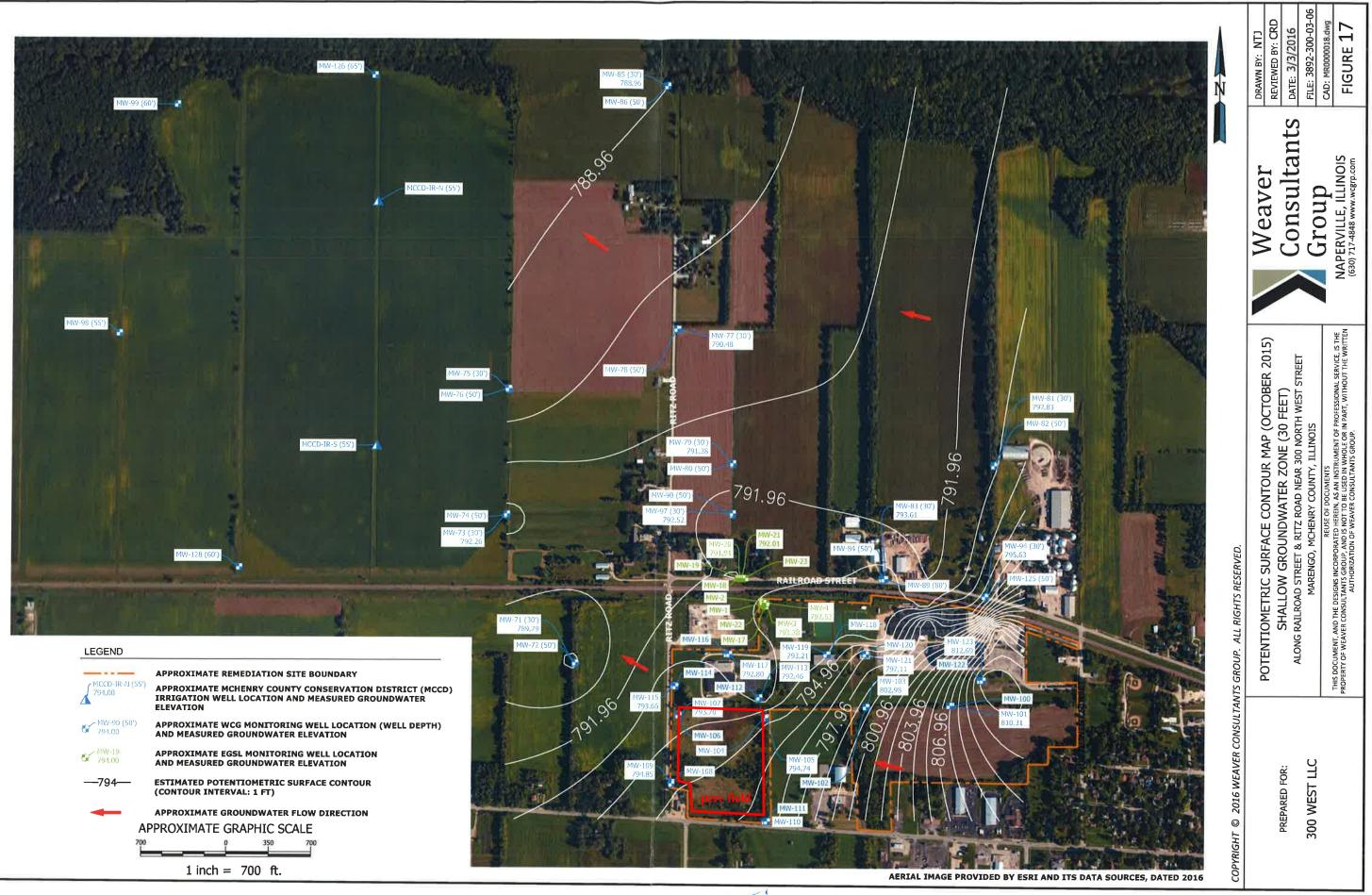
AECOM made several conservative assumptions in the evaluation where site-specific information was unavailable.

AECOM makes no warranties, either express or implied, regarding the estimates, opinions and conclusions presented herein.

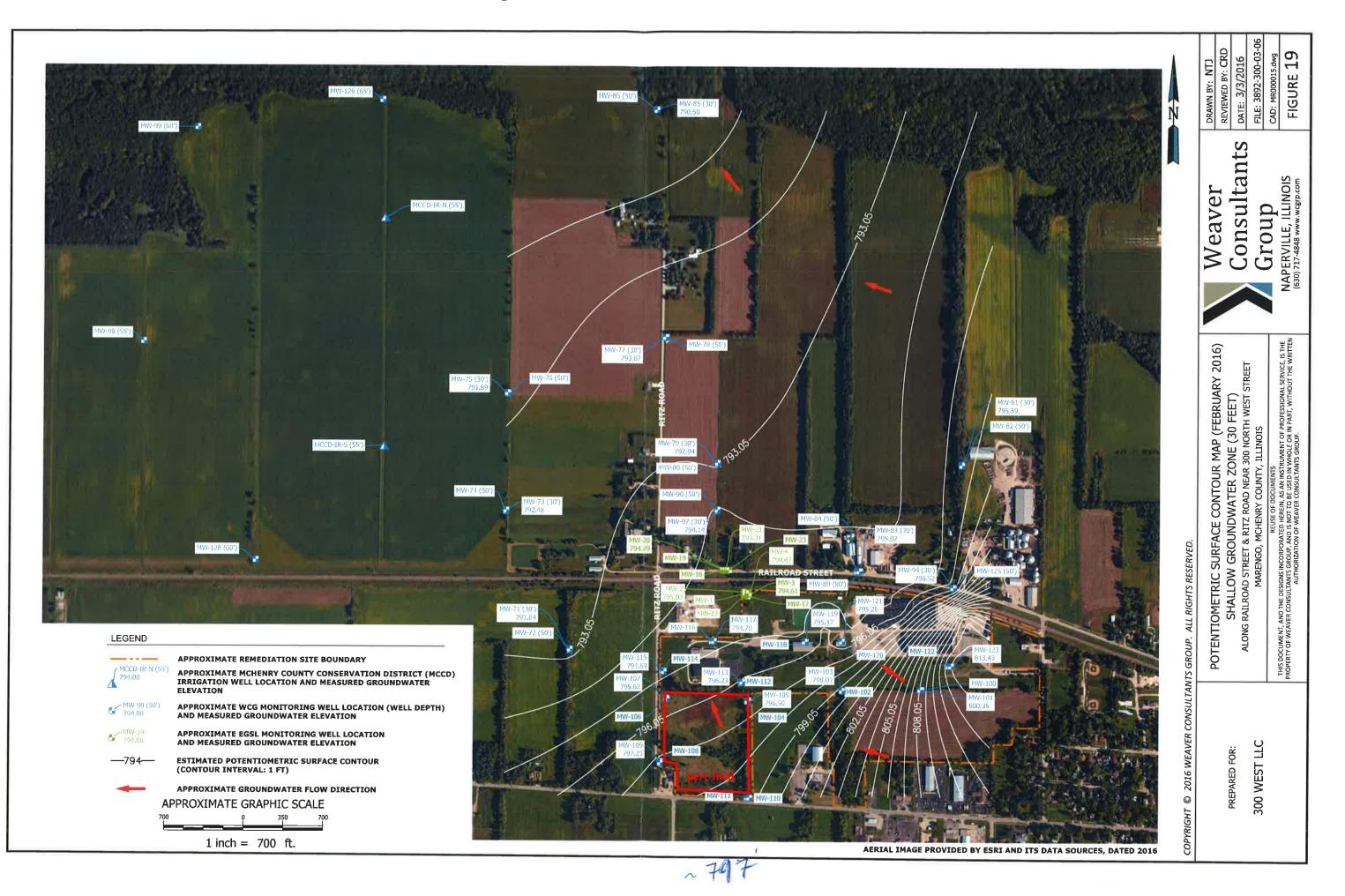
Further, AECOM does not warrant the veracity of the findings presented in the site documents completed by third parties and used by AECOM in the generation of this memorandum. Site conditions, or certain indicators of the presence of hazardous substances or other constituents, may have been latent, inaccessible, unobservable, or not reported. AECOM cannot represent that the pond system or the area aquifer do not contain chemicals at detectable concentrations beyond those documented in the reports provided for AECOM review.


References

Hantush, M.S., 1967, *Growth and Decay of Groundwater Mounds in Response to Uniform Percolation*, Water Resources Research, v. 3, p. 227-234.


USGS Scientific Investigations Report 2010-5102, http://pubs.usgs.gov/sir/2010/5102/

Attachments


Attachment 1 – Groundwater Contour Maps (March 2016 Weaver CSI Report) Attachment 2 – Mounding Analysis Results

perchell = 794

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aguifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aguifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

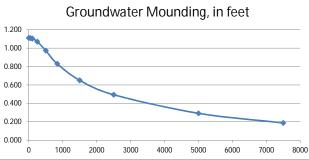
		use consistent units (e.g. feet & days or inches & hours)	Conversion Table	
ut Values			inch/hour feet/c	lay
0.0269	R	Recharge (infiltration) rate (feet/day)	0.67	1.33
0.200	Sy	Specific yield, Sy (dimensionless, between 0 and 1)		
136.00	К	Horizontal hydraulic conductivity, Kh (feet/day)*	2.00	4.00 In the report accompanying this spreadsheet
418.000	х	1/2 length of basin (x direction, in feet)		(USGS SIR 2010-5102), vertical soil permeability
418.000	у	1/2 width of basin (y direction, in feet)	hours days	(ft/d) is assumed to be one-tenth horizontal
1000.000	t	duration of infiltration period (days)	36	1.50 hydraulic conductivity (ft/d).
70.000	hi(0)	initial thickness of saturated zone (feet)		

maximum thickness of saturated zone (beneath center of basin at end of infiltration period) maximum groundwater mounding (beneath center of basin at end of infiltration period)

Mounding, in in x direction, in

Ground-

water


h(max) ∆h(max)

Distance from center of basin

Inpu

		feet		feet
	Re-Calcula	0	1.112	
	Re-Calcula	50	1.110	
		100	1.105	
Cro		250	1.072	
Grou		500	0.974	
1	1.200 -	836	0.832	
	1.000	1500	0.651	
	1.000 -	2500	0.495	
	0.800 -	5000	0.293	
		7,500	0.189	
	0.600 -			

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.